About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Evaluation of 10-nm Bulk FinFET RF Performance - Conventional Versus NC-FinFET
Abstract
In this letter, we have investigated the RF performance of a negative capacitance FinFET (NC-FinFET) using BSIM-CMG compact model extracted from DC and RF measured data of 10-nm technology node devices. This physics-based RF model is then coupled self-consistently with the Landau-Khalatnikov equation to obtain the RF NC-FinFET model. For the first time, we report, here, the impact of ferroelectric thickness (tfe) scaling on RF performance of NC-FinFET and find that NC-FinFET's cutoff frequency (fT) is a function of tfe. We also observe that the self-heating effect in NC-FinFET increases with increase in tfe, mainly due to increase in DC current, which can be easily compensated by decreasing supply voltage. Finally, we show that NC-FinFET can achieve similar analog/RF performance as the base FinFET, even at a reduced VDD.