About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Estimation of Probabilities in the Language Model of the IBM Speech Recognition System
Abstract
The language model probabilities are estimated by an empirical Bayes approach in which a prior distribution for the unknown probabilities is itself estimated through a novel choice of data. The predictive power of the model thus fitted is compared by means of its experimental perplexity [1] to the model as fitted by the Jelinek-Mercer deleted estimator and as fitted by the Turing-Good formulas for probabilities of unseen or rarely seen events. Copyright © 1984 by The Institute of Electrical and Electronics Engineers, Inc.