About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Electron-spin-resonance study of defects in plasma-enhanced chemical vapor deposited silicon nitride
Abstract
Silicon nitride films with low defect densities can be prepared by plasma-enhanced chemical vapor deposition with ammonia-to-silane ratios adjusted to obtain N-rich materials. An electron-spin-resonance signal with g value close to 2.002 is reported for such materials, and the defect is identified as a Si atom coordinated to three N atoms as observed earlier in high-temperature chemical vapor deposited silicon nitride. Densities below 1016 cm-3 are measured for substrate temperatures above 350°C for the first time. The distribution of defects is uniform through the film thickness. A surface defect density of 1012 cm-2 has also been found in films deposited at 250°C.