About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE Advanced Lithography 2024
Conference paper
Disruptive non-fluorinated photoacid generators using computational chemistry and library design
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified by various regulatory bodies as substances of concern. In line with the objective of safer and sustainable by design, a comprehensive program has been initiated to address these concerns. Part of this program includes the development of non -fluorinated photoacid generators (PAGs) without introducing new chemicals with unintended consequences. Using computational chemistry and synthetic organic chemistry, several scaffolds amenable to PAG library design have been realized. These novel PAGs offer facile tunability and advantages in many critical design parameters such as pKa, diffusion, absorption, shelf-life stability, and scalability. These early generation non-fluorinated PAGs show competitive and similar lithographic performance compared to fluorinated PAGs in i-line, krypton fluoride (KrF) laser, argon fluoride (ArF) laser and extreme ultraviolet (EUV) lithography.