Cooperative growth phenomena in silicon/germanium low-temperature epitaxy
Abstract
A series of Si:Ge alloys and structures has been prepared by ultrahigh-vacuum chemical vapor deposition. Alloys of composition 0≤Ge/Si≤0.20 are readily deposited at T=550°C. Commensurate, defect-free strained layers are deposited up to a critical thickness, whereupon the accumulated stress in the films is accommodated by the formation of dislocation networks in the substrate wafers. A cooperative growth phenomenon is observed where the addition of 10% germane to the gaseous deposition source accelerates silane's heterogeneous reaction rate by a factor of 25. A model is proposed where Ge acts as a desorption center for mobile hydrogen adatoms on the Si[100] surface, accelerating heterogeneous silane pyrolysis by the enhanced availability of chemisorption sites.