About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLSI Technology 2015
Conference paper
Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates
Abstract
We report on the first demonstration of the CMOS-compatible integration of high-quality InGaAs on insulator (InGaAs-OI) on Si substrates by a novel concept named Confined Epitaxial Lateral Overgrowth (CELO). This method, based on selective epitaxy, only requires the use of standard large-area silicon substrates and typical CMOS processes. It enables the fabrication of InGaAs-OI starting from both bulk and SOI Si wafers. The InGaAs epitaxial structures are characterized by a very low defectivity, and can fulfill the requirements of both ultra-thin-body and fins-based advanced CMOS nodes. Gate-first self-aligned FinFETs (100-nm-long gate, 50-nm-wide fins and 250-nm-wide plug-contacts) with excellent electrical characteristics comparable to start-of-the-art InGaAs MOSFETs on Si are demonstrated, highlighting that this new concept has significant potential to enable introduction of high-mobility channel materials in high-volume manufacturing of advanced CMOS nodes.