About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ESSDERC 2009
Conference paper
Challenges for silicon technology scaling in the Nanoscale Era
Abstract
The continuous and systematic increase in transistor density and performance, as described in "Moore's Law" [1] and guided by CMOS scaling theory [2], has been remarkably successful for the development of silicon technology for the past 40 years. As the silicon industry moves into sub-ten nanometer dimensions, significant technology challenges in device performance, power dissipation, and variability will be imposed by the approach toward atomistic and quantum-mechanical physics boundaries. These issues are frequently cited as the reason Moore's Law is "broken", or why CMOS scaling is coming to an end. However, the infusion of new materials, device structures, and the exploitation of 3D-silicon integration, coupled with innovations in circuit design and system architecture, will ensure several more generations of continued CMOS development. ©2009 IEEE.