About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Knowledge-Based Systems
Paper
Augmentation-Based Learning combining observations and user edits for Programming-by-Demonstration
Abstract
In this paper, we introduce a new approach to Programming-by-Demonstration in which the author is allowed to explicitly edit the procedure model produced by the learning algorithm while demonstrating the task. We describe Augmentation-Based Learning, a new algorithm that supports this approach by considering both demonstrations and edits as constraints on the hypothesis space, and resolving conflicts in favor of edits. © 2007 Elsevier B.V. All rights reserved.