IEEE Transactions on Audio, Speech and Language Processing

Advances in speech transcription at IBM under the DARPA EARS program

View publication


This paper describes the technical and system building advances made in IBM's speech recognition technology over the course of the Defense Advanced Research Projects Agency (DARPA) Effective Affordable Reusable Speech-to-Text (EARS) program. At a technical level, these advances include the development of a new form of feature-based minimum phone error training (fMPE), the use of large-scale discriminatively trained full-covariance Gaussian models, the use of scptaphonc acoustic context in static decoding graphs, and improvements in basic decoding algorithms. At a system building level, the advances include a system architecture based on cross-adaptation and the incorporation of 2100 h of training data in every system component. We present results on English conversational telephony test data from the 2003 and 2004 NIST evaluations. The combination of technical advances and an order of magnitude more training data in 2004 reduced the error rate on the 2003 test set by approximately 21% relative - from 20.4% to 16.1% - over the most accurate system in the 2003 evaluation and produced the most accurate results on the 2004 test sets in every speed category. © 2006 IEEE.