About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ANTS 2019
Conference paper
A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era
Abstract
We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments