Alessandro Pomponio
Kubecon + CloudNativeCon NA 2025
Large Language Models (LLMs) demonstrate substantial accuracy gains when augmented with reasoning modes such as chain-of-thought and inference-time scaling. However, reasoning also incurs significant costs in inference latency and token usage, with environmental and financial impacts, which are unnecessary for many simple prompts. We present a semantic router that classifies queries based on their reasoning requirements and selectively applies reasoning only when beneficial. Our approach achieves a 10.2 percentage point improvement in accuracy on the MMLU-Pro benchmark while reducing response latency by 47.1% and token consumption by 48.5% compared to direct inference with vLLM. These results demonstrate that semantic routing offers an effective mechanism for striking a balance between accuracy and efficiency in open-source LLM serving systems.
Alessandro Pomponio
Kubecon + CloudNativeCon NA 2025
Jie Ren, Zhenwei Dai, et al.
NeurIPS 2025
Rares Christian, Pavithra Harsha, et al.
NeurIPS 2025
Tian Gao, Amit Dhurandhar, et al.
NeurIPS 2025