About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes
Abstract
We have fabricated single-wall carbon nanotube field-effect transistors (CNFETs) in a conventional metal-oxide-semiconductor field-effect transistor (MOSFET) structure, with gate electrodes above the conduction channel separated from the channel by a thin dielectric. These top gate devices exhibit excellent electrical characteristics, including steep subthreshold slope and high transconductance, at gate voltages close to 1 V - a significant improvement relative to previously reported CNFETs which used the substrate as a gate and a thicker gate dielectric. Our measured device performance also compares very well to state-of-the-art silicon devices. These results are observed for both p- and n-type devices, and they suggest that CNFETs may be competitive with Si MOSFETs for future nanoelectronic applications. © 2002 American Institute of Physics.