About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Proceedings of the IEEE
Review
Vector Symbolic Architectures as a Computing Framework for Emerging Hardware
Abstract
This article reviews recent progress in the development of the computing framework vector symbolic architectures (VSA) (also known as hyperdimensional computing). This framework is well suited for implementation in stochastic, emerging hardware, and it naturally expresses the types of cognitive operations required for artificial intelligence (AI). We demonstrate in this article that the field-like algebraic structure of VSA offers simple but powerful operations on high-dimensional vectors that can support all data structures and manipulations relevant to modern computing. In addition, we illustrate the distinguishing feature of VSA, 'computing in superposition,' which sets it apart from conventional computing. It also opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. We sketch ways of demonstrating that VSA are computationally universal. We see them acting as a framework for computing with distributed representations that can play a role of an abstraction layer for emerging computing hardware. This article serves as a reference for computer architects by illustrating the philosophy behind VSA, techniques of distributed computing with them, and their relevance to emerging computing hardware, such as neuromorphic computing.