About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Briefings in Bioinformatics
Paper
Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity
Abstract
Immunologic recognition of peptide antigens bound to class I major histocompatibility complex (MHC) molecules is essential to both novel immunotherapeutic development and human health at large. Current methods for predicting antigen peptide immunogenicity rely primarily on simple sequence representations, which allow for some understanding of immunogenic features but provide inadequate consideration of the full scale of molecular mechanisms tied to peptide recognition. We here characterize contributions that unsupervised and supervised artificial intelligence (AI) methods can make toward understanding and predicting MHC(HLA-A2)-peptide complex immunogenicity when applied to large ensembles of molecular dynamics simulations. We first show that an unsupervised AI method allows us to identify subtle features that drive immunogenicity differences between a cancer neoantigen and its wild-type peptide counterpart. Next, we demonstrate that a supervised AI method for class I MHC(HLA-A2)-peptide complex classification significantly outperforms a sequence model on small datasets corrected for trivial sequence correlations. Furthermore, we show that both unsupervised and supervised approaches reveal determinants of immunogenicity based on time-dependent molecular fluctuations and anchor position dynamics outside the MHC binding groove. We discuss implications of these structural and dynamic immunogenicity correlates for the induction of T cell responses and therapeutic T cell receptor design.