About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MRS Communications
Review
Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance
Abstract
Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaics (PV) have long been considered promising candidates for large-scale PV deployment due to the availability of constituent elements and steady improvements in device efficiency over time. The key limitation to high efficiency in this technology remains a deficit in the open-circuit voltage with respect to the band gap. The past decade has seen significant progress toward understanding how the various material properties such as bulk and surface composition, point defects (intrinsic and extrinsic), and grain boundaries all impact the optoelectronic properties of CZTSSe materials, and consequently device performance. This paper aims to summarize what is known about the CZTSSe bulk and surfaces, and how these material properties may be related to the Voc deficit.