About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Ultrahigh-density atomic force microscopy data storage with erase capability
Abstract
We report a simple atomic force microscopy-based concept for a hard disk-like data storage technology. Thermomechanical writing by heating a Si cantilever in contact with a spinning polycarbonate disk has already been reported. Here the medium has been replaced with a thin polymer layer on a Si substrate, resulting in significant improvements in storage density. With this new medium, we achieve bit sizes of 10-50 nm, leading to data densities of 500 Gbit/in.2. We also demonstrate a novel high-speed and high-resolution thermal readback method, which uses the same Si cantilevers that are used in the writing process, and the capability to erase and rewrite data features repeatedly. © 1999 American Institute of Physics.