Publication
Applied Physics Letters
Paper

Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene

View publication

Abstract

Graphene nanoribbon (GNR) field-effect transistors (FETs) with widths down to 12 nm have been fabricated by electron beam lithography using a wafer-scale chemical vapor deposition (CVD) process to form the graphene. The GNR FETs show drain-current modulation of approximately 10 at 300 K, increasing to nearly 10 6 at 4 K. The strong temperature dependence of the minimum current indicates the opening of a bandgap for CVD-grown GNR-FETs. The extracted bandgap is estimated to be around 0.1 eV by differential conductance methods. This work highlights the development of CVD-grown large-area graphene and demonstrates the opening of a bandgap in nanoribbon transistors. © 2012 American Institute of Physics.