About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ED
Paper
Transistor mismatch properties in deep-submicrometer CMOS technologies
Abstract
Transistor mismatch data and analysis from poly/SiON and high-k/metal-gate (HKMG) bulk CMOS technologies are presented. It is found that the traditional mismatch figure of merit from the Pelgrom plot (AVT)continuously scales down as technology advances. Furthermore, the AVTvalues for both nFET and pFET in the HKMG technology are significantly reduced from poly/SiON technologies. By normalizing the mismatch data against electrical oxide thickness (TINV), threshold voltage (VTH), and effective work function, a direct comparison of the mismatch data from various technologies is made. The differences in nFET and pFET mismatch behaviors in both poly/SiON and HKMG technologies are discussed in detail. Correlation between transistor VTH mismatch and flicker noise variation is observed in both poly/SiON and HKMG technologies. Finally, it is quantitatively demonstrated that effective work function variation does not generate significant VTH variability in the present HKMG technology. © 2006 IEEE.