About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2021
Conference paper
Toward Optimal Solution for the Context-Attentive Bandit Problem
Abstract
In various recommender system applications, from medical diagnosis to dialog systems, due to observation costs only a small subset of a potentially large number of context variables can be observed at each iteration; however, the agent has a freedom to choose which variables to observe. In this paper, we analyze and extend an online learning framework known as Context-Attentive Bandit, We derive a novel algorithm, called Context-Attentive Thompson Sampling (CATS), which builds upon the Linear Thompson Sampling approach, adapting it to Context-Attentive Bandit setting. We provide a theoretical regret analysis and an extensive empirical evaluation demonstrating advantages of the proposed approach over several baseline methods on a variety of real-life datasets.