About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Thermal stability of Si1-xCx/Si strained layer superlattices
Abstract
The thermal stability of epitaxial silicon-carbon alloys grown by molecular beam epitaxy on (001) silicon was investigated using high resolution x-ray diffraction, transmission electron microscopy, and secondary ion mass spectroscopy measurements. Different superlattices, with alloy compositions of Si0.997C0.003, Si0.992C0.008, and Si0.985C0.015, all nominally 6 nm thick, with 24 nm Si spacer layers were employed. Annealing studies determined that there are different pathways to strain relaxation in this material system. At annealing temperatures of 900°C and below, the structures relax only by interdiffusion, indicating that these layers are stable during typical device processing steps. At temperatures of 1000°C and above, SiC precipitation dominates with enhanced precipitation in the Si1-xCx layers with the highest initial carbon content.