About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Thermal radiation spectra of individual subwavelength microheaters
Abstract
Polarization resolved spectra of infrared radiation from individual electrically driven platinum microheaters have been measured by Fourier-transform infrared spectrometry as a function of heaters' width. When the heater width approaches zero, the signal with polarization parallel to the heater long axis converges to a finite value, while its perpendicularly polarized counterpart drops below our detection limit. As a result this leads to strongly polarized radiation for very narrow heaters. Further, while the parallel polarized radiation spectra appear to be insensitive to heater width variation (at least within the sensitive range of our light detector), the perpendicular polarized spectra were heavily affected. We observed a λ/2 -like resonance that we attribute to correlation of charge oscillations across the heater's width, which are possibly mediated by surface plasmons. These findings provide implications for fabrication of nanoscale electrically driven thermal antennas. © 2008 The American Physical Society.