About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Journal of Computational Geometry and Applications
Paper
The L∞ Voronoi diagram of segments and VLSI applications
Abstract
In this paper we address the L∞ Voronoi diagram of polygonal objects and present applications in VLSI layout and manufacturing. We show that the L∞ Voronoi diagram of polygonal objects consists of straight line segments and thus it is much simpler to compute than its Euclidean counterpart; the degree of the computation is significantly lower. Moreover, it has a natural interpretation. In applications where Euclidean precision is not essential the L∞ Voronoi diagram can provide a better alternative. Using the L∞ Voronoi diagram of polygons we address the problem of calculating the critical area for shorts in a VLSI layout. The critical area computation is the main computational bottleneck in VLSI yield prediction.