About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Electron Devices
Paper
The impact of device footprint scaling on high-performance CMOS logic technology
Abstract
We propose selective scaling of device footprint for 65 nm and beyond CMOS technologies. The benefits of selective scaling of device footprint are illustrated using an ultrathin-body fully depleted silicon-on-insulator transistor as an example. We study the effect of footprint scaling on device, circuit, and system level performance. A complete 2-D device structure is modeled for the numerical analysis. The results predict that an optimal footprint design can provide 30% smaller chip layout area, 20% faster speed, and 10% less dynamic power on overall chip performance benchmarked with a 53-bit pipelined multiplier. The variability analysis on both dc and ac characteristics indicates that the benefits of selective footprint scaling are not degraded by device variation. © 2007 IEEE.