Publication
MRS Proceedings 2002
Conference paper

Texture and resistivity of Cu and dilute Cu alloy films

View publication

Abstract

Annealing of dilute binary Cu(Ti), Cu(In), Cu(Al), Cu(Sn), Cu(Mg), Cu(Nb), Cu(B), Cu(Co) and Cu(Ag) alloy films resulted in the strongest 〈111〉 fiber texture for Cu(Ti) and the lowest resistivity for Cu(Ag). The behavior of the alloy films was compared and contrasted with that for a pure evaporated Cu film. Electron beam evaporated films with compositions in the range of 2.0-4.2 at% and thicknesses in the range of 420-560 nm were annealed at 400°C for 5 hours. Two different approaches were used to derive volume fractions of texture components, namely fiber plots and orientation distributions. It is argued that for polytextured films such as the copper alloys studied here, orientation distributions derived from pole figures provide the most reliable basis for quantitative characterization.