About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Switching probabilities for single-domain magnetic particles
Abstract
Solving the stochastic Landau-Lifshitz equation numerically, we compute as a function of time t the probability per unit time, Ps (t), that a classical, single-domain magnetic particle with an easy uniaxial anisotropy and a collinear applied magnetic field will reverse its magnetization ("switch") via thermal activation over the energy barrier. The Ps (t) curves increase with t for small t, achieving a maximum at some time τP before decaying exponentially with time constant τD at long time, as per the standard Neel-Brown picture. Both τP and τD increase (the latter exponentially) with increasing barrier height; τP grows logarithmically with τD, consistent with a recent phenomenological "energy-ladder" model, and experiments on submicron-sized magnetic thin films. © 2005 The American Physical Society.