Publication
Physical Review Letters
Paper

Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits

View publication

Abstract

We present a scalable hybrid architecture for the 2D surface code combining superconducting resonators and hole-spin qubits in nanowires with tunable direct Rashba spin-orbit coupling. The backbone of this architecture is a square lattice of capacitively coupled coplanar waveguide resonators each of which hosts a nanowire hole-spin qubit. Both the frequency of the qubits and their coupling to the microwave field are tunable by a static electric field applied via the resonator center pin. In the dispersive regime, an entangling two-qubit gate can be realized via a third order process, whereby a virtual photon in one resonator is created by a first qubit, coherently transferred to a neighboring resonator, and absorbed by a second qubit in that resonator. Numerical simulations with state-of-the-art coherence times yield gate fidelities approaching the 99% fault tolerance threshold.

Date

03 Apr 2017

Publication

Physical Review Letters

Authors

Share