About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Sub-attonewton force detection at millikelvin temperatures
Abstract
A 290-nm-thick single-crystal silicon cantilever has been cooled in vacuum to a temperature of 110 mK in order reduce its thermal motion and thereby improve the achievable force resolution. Since the thermal conductivity of the silicon cantilever is extremely low at millikelvin temperatures, an improved optical fiber interferometer was developed to measure the subangstrom thermal motion with optical powers as low as 2 nW. At the lowest temperature, the cantilever exhibited a quality factor of 150 000 and achieved a noise temperature of 220 mK, with a corresponding force noise of 820 zN in a 1 Hz bandwidth. © 2001 American Institute of Physics.