Publication
ICDE 2015
Conference paper

STREAMCUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream

View publication

Abstract

What is happening around the world? When and where? Mining the geo-tagged Twitter stream makes it possible to answer the above questions in real-time. Although a single tweet can be short and noisy, proper aggregations of tweets can provide meaningful results. In this paper, we focus on hierarchical spatio-temporal hashtag clustering techniques. Our system has the following features: (1) Exploring events (hashtag clusters) with different space granularity. Users can zoom in and out on maps to find out what is happening in a particular area. (2) Exploring events with different time granularity. Users can choose to see what is happening today or in the past week. (3) Efficient single-pass algorithm for event identification, which provides human-readable hashtag clusters. (4) Efficient event ranking which aims to find burst events and localized events given a particular region and time frame. To support aggregation with different space and time granularity, we propose a data structure called STREAMCUBE, which is an extension of the data cube structure from the database community with spatial and temporal hierarchy. To achieve high scalability, we propose a divide-and-conquer method to construct the STREAMCUBE. To support flexible event ranking with different weights, we proposed a top-k based index. Different efficient methods are used to speed up event similarity computations. Finally, we have conducted extensive experiments on a real twitter data. Experimental results show that our framework can provide meaningful results with high scalability.

Date

26 May 2015

Publication

ICDE 2015

Authors

Share