About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICCAD 2013
Conference paper
STEAM: A fast compact thermal model for two-phase cooling of integrated circuits
Abstract
Two-phase liquid cooling of computer chips via microchannels etched directly on silicon dies is a potential long-term solution to enable continued integration of high-performance multiprocessors. Two-phase cooling refers to the heat removal via evaporation of a refrigerant flowing inside a heat sink. While possessing superior cooling properties, large-scale use of this technology in the industry is limited by the lack of thermal modeling tools that can accurately predict temperatures in a two-phase cooled IC. In this paper, we propose STEAM, a new compact thermal model for 2D/3D ICs with two-phase cooling via silicon microchannels. The accuracy of the STEAM model is validated against measurements from a real two-phase cooled IC test stack reported previously in literature. Temperatures were predicted with an average error as low as 10.2% for uniform heat fluxes and 6.9% for hotspots. Finally, the STEAM model is applied to a realistic 3D multiprocessor system-on-chip (3D MP-SoC) with two-phase cooling to simulate IC temperatures and the refrigerant pumping power, demonstrating the applicability of STEAM in the early-stage design of near-future high-performance computers with two-phase cooling. © 2013 IEEE.