I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
It has been conjectured that the stably ergodic diffeomorphisms are open and dense in the space of volume-preserving, partially hyperbolic diffeomorphisms of a compact manifold. In this paper we deal with two recalcitrant examples; the standard map cross Anosov and the ergodic automorphisms of the 4-torus. In both cases we show that they may be approximated by stably ergodic diffeomorphisms which have the stable accessibility property.