About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
J Combin Optim
Paper
Efficient Heuristics for Orientation Metric and Euclidean Steiner Tree Problems *
Abstract
We consider Steiner minimum trees (SMT) in the plane, where only orientations with angle iπ/σ, 0 ≤ i ≤; σ - 1 and σ an integer, are allowed. The orientations define a metric, called the orientation metric, λσ, in a natural way. In particular, λ2 metric is the rectilinear metric and the Euclidean metric can be regarded as λ∞ metric. In this paper, we provide a method to find an optimal λσ SMT for 3 or 4 points by analyzing the topology of λσ SMT's in great details. Utilizing these results and based on the idea of loop detection first proposed in Chao and Hsu, IEEE Trans. CAD, vol. 13, no. 3, pp. 303-309, 1994, we further develop an O(n2) time heuristic for the general λσ SMT problem, including the Euclidean metric. Experiments performed on publicly available benchmark data for 12 different metrics, plus the Euclidean metric, demonstrate the efficiency of our algorithms and the quality of our results.