About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Statistical Physics
Paper
Stability of nonstationary states of classical, many-body dynamical systems
Abstract
We summarize recent arguments which show that for a broad class of classical, many-body dynamical model systems with short-range interactions (such as coupled maps, cellular automata, or partial differential equations), collectively chaotic states-nonstationary states wherein some Fourier amplitude varies chaotically in time-cannot occur generically. While chaos occurs ubiquitously on a local level in such systems, the macroscopic state of the system typically remains periodic or stationary. This implies that the dimension D of chaotic ("strange") attractors must diverge with the linear size L of the system like D∼(L/ξC)d in d space dimensions, where ξ (<∞) is the spatial coherence length. We also summarize recent work which demonstrates that in spatially isotropic systems that have short-range interactions and evolve (like coupled maps) in discrete time, periodic states are never stable under generic conditions. In spatially anisotropic systems, however, short-range interactions that exploit the anisotropy and so allow for the stabilization of periodic states do exist. © 1988 Plenum Publishing Corporation.