About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2022
Conference paper
SpeechSplit2.0: Unsupervised Speech Disentanglement for Voice Conversion without Tuning Autoencoder Bottlenecks
Abstract
SPEECHSPLIT can perform aspect-specific voice conversion by disentangling speech into content, rhythm, pitch, and timbre using multiple autoencoders in an unsupervised manner. However, SPEECHSPLIT requires careful tuning of the autoencoder bottlenecks, which can be time-consuming and less robust. This paper proposes SPEECHSPLIT2.0, which constrains the information flow of the speech component to be disentangled on the autoencoder input using efficient signal processing methods instead of bottleneck tuning. Evaluation results show that SPEECHSPLIT2.0 achieves comparable performance to SPEECHSPLIT in speech disentanglement and superior robustness to the bottleneck size variations. Our code is available at https://github.com/biggytruck/SpeechSplit2.