About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Computer Speech and Language
Paper
Speech recognition with continuous-parameter hidden Markov models
Abstract
The acoustic modeling problem in automatic speech recognition is examined from an information-theoretic point of view. This problem is to design a speech-recognition system which can extract from the speech waveform as much information as possible about the corresponding word sequence. The information extraction process is broken down into two steps: a signal-processing step which converts a speech waveform into a sequence of information-bearing acoustic feature vectors, and a step which models such a sequence. We are primarily concerned with the use of hidden Markov models to model sequences of feature vectors which lie in a continuous space. We explore the trade-off between packing information into such sequences and being able to model them accurately. The difficulty of developing accurate models of continuous-parameter sequences is addressed by investigating a method of parameter estimation which is designed to cope with inaccurate modeling assumptions. © 1987.