Abstract
Maximum A Posteriori (MAP) adaptation is a powerful tool for building speaker specific acoustic models. Modern speech applications utilize acoustic models with millions of parameters, and serve millions of users. Storing an acoustic model for each user in such settings is costly. However, speaker specific acoustic models are generally similar to the acoustic model being adapted. By imposing sparseness constraints, we can save significantly on storage, and even improve the quality of the resulting speaker-dependent model. In this paper we utilize the ℓ 1 or ℓ 0 norm as a regularizer to induce sparsity. We show that we can obtain up to 95% sparsity with negligible loss in recognition accuracy, with both penalties. By removing small differences, which constitute "adaptation noise", sparse MAP is actually able to improve upon MAP adaptation. Sparse MAP reduces the MAP word error rate by 2% relative at 89% sparsity. © 2011 IEEE.