Utilizing these three metrics, we identified recurring patterns of specific model behavior when we applying them to inputs of a specific model. For example, a high IoU score indicates the explanation and ground truth feature sets are very similar (IoU=1 implies S = G), meaning the features that are critical to human reasoning are also important to the model's decision. Correctly classified instances with high IoU scores indicate the model was correct in ways that tightly align with human reasoning. Incorrectly classified instances with high IoU scores, on the other hand, are often challenging for the model, such as the image of a snowplowing truck that is labeled as snowplow but predicted as pickup.
We demonstrate how Shared Interest can be used for real-world analysis through case studies of three interactive interpretability workflows of deep learning models. The first case study follows a domain expert (a dermatologist) using Shared Interest to determine the trustworthiness of a melanoma prediction model. The second case study follows a machine learning expert analyzing the faithfulness of their model and saliency method. The final case study examines how Shared Interest can analyze model behavior even without pre-existing ground truth annotations.
We developed visual prototypes for each case study to make the Shared Interest method explorable and accessible to all users, regardless of machine learning background. The computer vision and natural language processing prototypes focus on sorting and ranking input instances so users can examine model behavior.
Each input instance (image or review) is annotated with its ground truth features (highlighted in yellow) and its saliency features (highlighted in orange) and is shown alongside its Shared Interest scores, label, and prediction. The interface enables sorting and filtering based on Shared Interest score, Shared Interest case, label, and prediction. The human annotation interface is designed for interactive probing. The interface enables users to select and annotate an image with a ground truth region and returns the top classes with the highest Shared Interest scores for that ground truth region.
Shared Interest opens the door to several promising directions for future work. One straightforward path is applying Shared Interest to tabular data - a standard format used to train models, particularly in healthcare applications. Tabular data is often more semantically complex than image or text data and thus allows us to bring further nuance to the recurring behavior patterns we have identified in this paper. Another avenue for future work is using Shared Interest to compare the fidelity of different saliency methods.
Shared Interest started as an internship of Angie Boggust (MIT) at IBM Research and continued as collaboration between the Visual AI Lab at IBM and the Visualization Group at MIT supported by the MIT-IBM Watson AI lab.
IBM Research participants presented recent advances related to our Human-Centered AI research agenda including four full papers, two co-organized workshop, one co-organized SIG, and two workshop papers. We have a diverse array of contributions focusing on the many different areas of human-computer interaction and data visualization.
Explore all our contributions at CHI 2022