About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Semi-Classical Calculation of Charge Distributions in Ultra-Narrow Inversion Lines
Abstract
An increasing interest in submicrometer-scale electronic systems has prompted study of the achievable charge confinement in ultra-narrow inversion lines. This paper describes the modeling and resultant charge distributions obtained via semi-classical calculations for the silicon grating-gate field-effect transistor. Since the gate structure of this device is periodic, a relatively small simulation region with welldefined boundary conditions could be employed. Using a finite-element technique, the charge and electrostatic potential is calculated numerically and self-consistently, as a function of electrode biases. Results are presented for charge confinement both directly underneath and between grating electrodes, and an effective capacitance is extracted for the strongest confinement regime. © 1986 IEEE