About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Discrete Mathematics
Paper
Self-complementary graphs and Ramsey numbers part I: The decomposition and construction of self-complementary graphs
Abstract
A new method of studying self-complementary graphs, called the decomposition method, is proposed in this paper. Let G be a simple graph. The complement of G, denoted by Ḡ, is the graph in which V(Ḡ) = V(G); and for each pair of vertices u,v in Ḡ, uv ∈ G-E(Ḡ) if and only if uv ∉ E(G). G is called a self-complementary graph if G and Ḡ are isomorphic. Let G be a self-complementary graph with the vertex set V(G)={v1v2,...,v4n}, where dG(v1)≤dG(v2)≤⋯ ≤dG(v4n). Let H = G[v1v2,...,v2n], H′ = G[v2n+1, V2n+2,...,v4n] and H* = G - E(H) - E(H′). Then G = H + H′ + H* is called the decomposition of the self-complementary graph G. In part I of this paper, the fundamental properties of the three subgraphs H, H′ and H* of the self-complementary graph G are considered in detail at first. Then the method and steps of constructing self-complementary graphs are given. In part II these results will be used to study certain Ramsey number problems (see (II)). © 2000 Elsevier Science B.V. All rights reserved.