Charlotte Ramon, Yuksel Temiz, et al.
SPIE BiOS 2017
Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ∼300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ∼70 cells/μL for DNA analysis and ∼15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor.
Charlotte Ramon, Yuksel Temiz, et al.
SPIE BiOS 2017
Tobias Kraus, Laurent Malaquin, et al.
MicroTAS 2005
Julien F. Cors, Robert D. Lovchik, et al.
Review of Scientific Instruments
Emmanuel Delamarche, Iago Pereiro, et al.
Langmuir