About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2013
Conference paper
Sample complexity of risk-averse bandit-arm selection
Abstract
We consider stochastic multiarmed bandit problems where each arm generates i.i.d. rewards according to an unknown distribution. Whereas classical bandit solutions only maximize the expected reward, we consider the problem of minimizing risk using notions such as the value-at-risk, the average value-at-risk, and the mean-variance risk. We present algorithms to minimize the risk over a single and multiple time periods, along with PAC accuracy guarantees given a finite number of reward samples. In the single-period case, we show that finding the arm with least risk requires not many more samples than the arm with highest expected reward. Although minimizing the multiperiod value-at-risk is known to be hard, we present an algorithm with comparable sample complexity under additional assumptions.