About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Refractive index determination of SiGe using reactive ion etching/ellipsometry: Application of the depth profiling of the GE concentration
Abstract
The complex refractive index at a wavelength of 632.8 nm of strained epitaxial SiGe layers on silicon substrates has been determined as a function of the germanium content using in situ ellipsometry during reactive ion etching. The germanium concentration was obtained from Rutherford backscattering. These index values are used to invert the ellipsometry equations. Using this principle, the Ge concentration depth profile of an unknown SiGe structure can be determined from an in situ ellipsometry measurement sequence that is taken while the unknown sample is being etched.