About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AMIA Annual Symposium 2021
Conference paper
Reducing Physicians’ Cognitive Load During Chart Review: A Problem-Oriented Summary of the Patient Electronic Record
Abstract
Overabundance of information within electronic health records (EHRs) has resulted in a need for automated systems to mitigate the cognitive burden on physicians utilizing today’s EHR systems. We present ProSPER, a Problem-oriented Summary of the Patient Electronic Record that displays a patient summary centered around an autogenerated problem list and disease-specific views for chronic conditions. ProSPER was developed using 1,500 longitudinal patient records from two large multi-specialty medical groups in the United States, and leverages multiple natural language processing (NLP) components targeting various fundamental (e.g. syntactic analysis), clinical (e.g. adverse drug event extraction) and summarizing (e.g. problem list generation) tasks. We report evaluation results for each component and discuss how specific components address existing physician challenges in reviewing EHR data. This work demonstrates the need to leverage holistic information in EHRs to build a comprehensive summarization application, and the potential for NLP-based applications to support physicians and improve clinical care.