Medical Image Analysis

Reducing annotation effort in digital pathology: A Co-Representation learning framework for classification tasks

View publication


Classification of digital pathology images is imperative in cancer diagnosis and prognosis. Recent advancements in deep learning and computer vision have greatly benefited the pathology workflow by developing automated solutions for classification tasks. However, the cost and time for acquiring high quality task-specific large annotated training data are subject to intra- and inter-observer variability, thus challenging the adoption of such tools. To address these challenges, we propose a classification framework via co-representation learning to maximize the learning capability of deep neural networks while using a reduced amount of training data. The framework captures the class-label information and the local spatial distribution information by jointly optimizing a categorical cross-entropy objective and a deep metric learning objective respectively. A deep metric learning objective is incorporated to enhance the classification, especially in the low training data regime. Further, a neighborhood-aware multiple similarity sampling strategy, and a soft-multi-pair objective that optimizes interactions between multiple informative sample pairs, is proposed to accelerate deep metric learning. We evaluate the proposed framework on five benchmark datasets from three digital pathology tasks, i.e., nuclei classification, mitosis detection, and tissue type classification. For all the datasets, our framework achieves state-of-the-art performance when using approximately only 50% of the training data. On using complete training data, the proposed framework outperforms the state-of-the-art on all the five datasets.


01 Jan 2021


Medical Image Analysis