About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Carbon
Paper
Protein WW domain denaturation on defected graphene reveals the significance of nanomaterial defects in nanotoxicity
Abstract
Nanomaterial defects occur widely due to various situations such as synthesis imperfections, exposure to harsh environment, or even intentional designs. However, the consequence of nanomaterial defects on their interfacing biological systems remains largely unknown. Here, we study the interaction of a defective graphene nanosheet with a widely used model protein, YAP65WW-domain, using molecular dynamics simulations. We find that local defects on graphene consistently act to unfold the YAP65WW-domain. Protein residues bound to the graphene defect are tightly anchored due to favorable electrostatic interactions. While the residues at the interface are highly restrained, thermal movements of other parts of the protein act to denature and unfold the entire protein. In contrast, control simulations of protein binding on ideal graphene reveal a well preserved native structure with no unfolding events detected. Our present findings elucidate the role of graphene defects on protein adsorption and emphasize the need for improved understanding of nanomaterial defects in potential biomedical applications.