Publication
Langmuir
Paper

Programmable Assembly of Hybrid Nanoclusters

View publication

Abstract

Hybrid nanoparticle clusters (often metallic) are interesting plasmonic materials with tunable resonances and a near-field electromagnetic enhancement at interparticle junctions. Therefore, in recent years, we have witnessed a surge in both the interest in these materials and the efforts to obtain them. However, a versatile fabrication of hybrid nanoclusters, that is, combining more than one material, still remains an open challenge. Current lithographical or self-assembly methods are limited to the preparation of hybrid clusters with up to two different materials and typically to the fabrication of hybrid dimers. Here, we provide a novel strategy to deposit and align not only hybrid dimers but also hybrid nanoclusters possessing more complex shapes and compositions. Our strategy is based on the downscaling of sequential capillarity-assisted particle assembly over topographical templates. As a proof of concept, we demonstrate dimers, linear trimers, and 2D nanoclusters with programmable compositions from a range of metallic nanoparticles. Our process does not rely on any specific chemistry and can be extended to a large variety of particles and shapes. The template also simultaneously aligns the hybrid (often anisotropic) nanoclusters, which could facilitate device integration, for example, for optical readout after transfer to other substrates by a printing step. We envisage that this new fabrication route will enable the assembly and positioning of complex hybrid nanoclusters of different functional nanoparticles to study coupling effects not only locally but also at larger scales for new nanoscale optical devices.

Date

06 Feb 2018

Publication

Langmuir

Authors

Share