Publication
Physical Review Letters
Paper

Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition

View publication

Abstract

We argue that whenever the transition between the insulating and superconducting phases of a disordered two-dimensional Fermi system at zero temperature (T=0) is continuous, the system behaves like a normal metal right at the transition; i.e., the resistance has a finite, nonzero value at T=0. This value is universalindependent of all microscopic details. These features, consistent with recent measurements on disordered films, are hypothesized to apply to other 2D transitions at T=0, such as Anderson localization with spin-orbit coupling, and the quantum Hall effect. © 1990 The American Physical Society.

Date

29 Jan 1990

Publication

Physical Review Letters

Authors

Share