Polarization-independent thermooptic phase shifters in silicon-oxynitride waveguides
Abstract
The effective refractive index of dielectric waveguides can be tuned using the thermooptic effect. In general, the tuning efficiency is polarization-dependent owing to temperature-induced stress in the layers, which causes polarization-dependent loss in optical devices. These stress issues are analyzed and tested for a high-index-contrast waveguide structure based on a silicon-oxynitride core. Experimental results are in agreement with simulations. The relative difference in tuning efficiency for transverse electric and transverse magnetic polarized light can be tuned from -3% to +3% by appropriate waveguide technology control. The optimized thermooptic phase shifters show tuning efficiency differences below 0.25%, which are reproducible from wafer to wafer.