About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMOD 2019
Conference paper
Overview of the 2nd international workshop on exploiting artificial intelligence techniques for data management (AIDM'19)
Abstract
Recently, the Artificial Intelligence (AI) field has been experiencing a resurgence. AI broadly covers a wide swath of techniques which include logic-based approaches, probabilistic graphical models, and machine learning/deep learning approaches. Advances in hardware capabilities, such as Graphics Processing Units (GPUs), software components (e.g., accelerated libraries, programming frameworks), and systems infrastructures (e.g., GPU-enabled cloud providers) has led to a wide-spread adaptation of AI techniques to a variety of domains. Examples of such domains include image classification, autonomous driving, automatic speech recognition (ASR) and conversational systems (chatbots). AI techniques not only support multiple datatypes (e.g., free text, images, or speech), but are also available in various configurations, from personal devices to large-scale distributed systems.