About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISSCC 2013
Conference paper
Optical receivers using DFE-IIR equalization
Abstract
Future computing systems will require increasingly high bandwidth to supply data to microprocessors, FPGAs, and other computational blocks [1,2]. Increasing data rate is a common solution, as I/O pad density is not scaling with bandwidth requirements. Copper interconnect has increasingly high loss with frequency, requiring complex, power-hungry equalization to overcome the channel response at high data rates. In contrast, optical interconnect can transport signals over long distances without complex equalization. Chip-to-chip optical interconnect will require sensitive, low-power, clocked receiver (RX) circuits that operate at high data rates. Conventional TIA-based RXs [1,2] require high power to maximize gain and minimize noise while maintaining high BW. A low-noise, low-BW, low-power TIA is combined with a 2-tap DFE to achieve high sensitivity in [3], but the data rate is 4Gb/s and limited dynamic range is demonstrated. Double-sampling architectures eliminate the TIA, replacing it with a large resistor [4] or a capacitive integrator [5], which decreases the front-end BW. The BW is equalized by double sampling, which is equivalent to a 2-tap FFE. However, the use of small sampling capacitors in [4,5] adds kT/C noise, limiting sensitivity. In this work, we demonstrate an optical RX with a large input resistance to maximize gain and sensitivity, while DFE with IIR feedback (DFE-IIR) [6] eliminates the resulting ISI with minimal added noise. © 2013 IEEE.