Don Coppersmith, David Gamarnik, et al.
Random Structures and Algorithms
Consider a complete graph on n vertices with edge weights chosen randomly and independently from an exponential distribution with parameter 1. Fix k vertices and consider the minimum weight Steiner tree which contains these vertices. We prove that with high probability the weight of this tree is (1 + o(1))(k - 1)(logn - log k)/n when k = o(n) and n → ∞.
Don Coppersmith, David Gamarnik, et al.
Random Structures and Algorithms
David Gamarnik
Probability Theory and Related Fields
David Gamarnik, Mark S. Squillante
Stochastic Models
David Gamarnik, Dmitriy Katz
Annals of Applied Probability